
催化裂化是石油煉化過程中的重要工藝,巴斯夫在催化劑鐵中毒及其對FCC催化劑的影響上有廣泛的研究,Stamina催化劑就其多年研究的成果。
來自 | BASF
編譯 | 二丫
催化裂化是在熱和催化劑的作用下使重質油發生裂化反應,轉變為裂化氣、汽油和柴油等的過程,是一種非常重要的汽、柴油生產工藝,目前國內消費汽油約有75%來自催化裂化工藝。催化裂化過程中催化劑的作用非常重要,直接影響到產品質量和收率。國內外對于催化裂化催化劑的研究一直沒有間斷,為催化裂化工藝的發展做出了巨大貢獻。
Stamina是一種重油流化催化裂化(FCC)反應催化劑。能夠根據實際情況設計催化劑孔道結構,最大化輕質油品產量,保證油品質量,抑制焦炭生成。作業者利用Stamina能夠將劣質的原料轉化為具有較高經濟效益成品油,煉廠試驗表明使用該催化劑處理高金屬含量的原料時能夠顯著提高輕質油品產量。
在上世紀90年代時,鐵污染首次被確認為流化催化裂化(FCC)設備中的一大問題。巴斯夫在催化劑鐵中毒及其對FCC催化劑的影響上有廣泛的研究。本文對其中一些發現進行了簡短的總結。
首先,了解鐵的來源和如何量化FCC催化劑中的鐵含量是非常重要的。因為鐵自然存在于制備FCC催化劑所用的黏土中,所以新鮮的催化劑中本身就含有0.25-0.75wt%的鐵。這種形式的鐵并不參與任何副反應,也不會造成催化劑表面任何形式的堵塞。原油中與高分子質量的烴類物質結合在一起的鐵原子才是問題的所在。
鐵原子同時也可能來源于設備的腐蝕(游離鐵),這部分鐵的量非常有限,不是鐵原子的主要來源。進料中的鐵也會對催化劑造成影響,沉淀于FCC催化劑表面。
催化劑鐵中毒
鐵的化學或物理作用都會造成催化劑中毒,為催化裂化過程造成一系列的問題,其中鐵對催化劑的化學作用影響要小于物理作用。由于鐵原子具有脫氫作用,鐵對催化劑的化學作用會導致反應的氫氣和積炭含量增加,一氧化碳含量的稍許增加,同時造成硫元素從反應器轉移到再生器,硫化物的排放增加。
催化劑受到鐵的物理作用會造成催化劑表明結晶、融化或者降低催化劑表面積。催化劑中毒引起的最嚴重問題是催化劑孔道被堵塞,這會降低催化劑內部和外部分子的轉移,最終造成焦炭和重油產量增加。
原料中的鐵對催化劑造成影響的強度取決于催化劑類型、鐵離子存在形式以及其他污染物的影響,受到污染的催化劑催化作用降低,從而降低原料轉化率。對催化劑的孔隙率,特別是表面孔隙率進行優化可以降低鐵對催化劑活性的影響,BASF的催化劑原位制造技術能夠顯著提高催化劑對鐵的抗性。
從表面形態學來說,采用原位制造的催化劑有更高的表面孔隙率,這樣它們也就能經受更高程度的鐵垢。巴斯夫的催化劑已經成功應用于含鐵2wt%原料的催化裂化應用中。
更高轉的化率
巴斯夫著力解決鐵在工業生產中造成的負面影響。在過去15年中,巴斯夫的催化劑從未因鐵的影響而導致轉化率的降低。下面這個案例分析描述了北美一個煉油廠在使用了巴斯夫的Stamina催化劑后的鐵的偏移。
在幾個月時間內,這家煉油廠在FCC設備中加工了高含鐵量的進料。這家煉油廠觀察到平衡狀態時催化劑上附著的鐵含量由1.17wt%增至1.48wt%,即進料中鐵含量增加了45%。同時該煉油廠還發現,在平衡狀態時,催化劑上鈣和鈉的含量也分別增加了23%和48%,鎳(Ni)和釩(V)的含量則幾乎保持不變。設備活性未曾減少,也沒有造成過高的重油產量。
需注意的是,當轉化率隨著鐵含量的增加而降低時,這通常意味著催化裂化進料性質的改變是轉化率降低的主要原因,而不是由于鐵含量的上升引起的轉化率降低。在發生以上情況時,進料變重是Na和V含量提高、轉化率降低的原因。

鐵的流動性
巴斯夫研究的另一個關注點是鐵的流動性。在研究鐵的流動性時,區分催化劑顆粒內部金屬原子的流動和催化劑顆粒間金屬原子的流動是非常重要的。量化分子內金屬原子流動的方法之一是使用掃面電子顯微鏡(SEM)獲取反應平衡狀態下催化劑顆粒橫截面上的數據。
通過比較外層和內層的金屬污染物含量可以得到催化劑的外圍沉積指數(PDI)。例如,金屬釩PDI數值接近于1,說明釩在催化劑分子中接近于均勻分布,即有比較高的分子內流動性。鐵的PDI數值范圍從4到7以上不等,說明鐵的分子內流動性比較低,與鎳的分散情況相似。
為了研究催化劑顆粒間金屬原子的轉移,研究人員采用了很多方法對反應平衡狀態下的催化劑顆粒進行了表征。利用催化劑顆粒的密度差異,采用懸浮法對催化劑顆粒進行了分離,結果顯示平衡狀態下鐵原子附著的催化劑顆粒密度與具有高轉移活性的V、低轉移活性的Ni催化劑顆粒密度差異明顯。
而從平衡態催化劑的整體的SEM數據來看,新、舊催化劑顆??梢酝ㄟ^表面制圖很明顯地區分出來,說明鐵的流動性與釩的流動性有明顯的區別??偟膩碚f,在對一系列商用設備的研究后表明,Fe并不像V一樣有很高的催化劑顆粒間流動性。
每一次技術的更新都經過科研人員的艱苦努力,Stamina是BASF多年研究的成果,相信Stamina在催化裂化工藝中一定會發揮出巨大的作用。
CSSOPE揭秘2017全球石油化工裝備采購新動向
日前,總部位于阿聯酋迪拜的BSL集團CPO與第七屆中國石油化工裝備采購國際峰會暨展覽會組委會確認將出席峰會演講,發表主題為“國際買家與中國石油化工制造商/供應商高效合作的戰略”的主題發言。據悉,該集團每年從中國采購的鋼管等項目物資超過數十億美元,今年來華意在加強與中國供應商的溝通交流,鞏固戰略合作,互利共贏。
作為國內首個為石油石化行業采購商與供應商搭建的專業交流對接平臺,中國石油裝備采購國際峰會(CSSOPE)憑借獨特的市場定位及豐富的行業資源,已連續六年聚集國內外眾多采購巨頭,紛紛在此平臺宣布未來在華采購的新動向及對供應商的新要求,為國內優秀供應商打開國際市場、取得跨國油氣裝備采購訂單提供了廣闊的市場機會。
近年來,CSSOPE參會人員逐年增加,分享技術新成果、前言信息、訂單計劃、發展趨勢。很多中國石油石化裝備設備制造企業在此平臺上多次進行企業展示、產品推廣、資本合作、技術對接與交流,能力和水平快速提升,市場份額逐步擴大,并在全球樹立起“中國制造”品牌形象。
第七屆中國石油化工裝備采購國際峰會暨展覽會(CSSOPE 2017)將于2017年5月24-25日在上海舉辦。了解詳情請訪問:http://www.petroequipsourcing.com/info/CN/
Iron (Fe) contamination was first recognized as a concern for fluid catalytic cracking (FCC) units in the 1990s. BASF has studied iron poisoning and its effects on FCC catalyst extensively, and a short summary of some of those findings is included here.
First, it is important to understand iron sources and how to quantify iron on FCC catalyst. Iron is inherent in the fresh catalyst, between 0.25 and 0.75 wt%, as it is a natural ingredient of clays used for manufacturing FCC catalysts; this type of iron does not participate in any side reactions nor cause any kind of catalyst surface blockage. The iron that is of concern comes in with the crude oil in the form of iron incorporated in high molecular weight hydrocarbons. Iron can also come from equipment corrosion (tramp iron), which is generally less of a concern. Iron from the feed deposits on the surface of the FCC catalyst, forming nodules. This is referred to as added iron.
Concerns with iron-poisoned catalysts
Units with iron-poisoned catalysts can face a number of problems, either from the chemical or physical effects of added iron. The chemical effects are often minor and include higher hydrogen (H2) and coke due to the dehydrogenation activity of iron, mild carbon monoxide (CO) promotion, and the transfer of sulfur (S) from the reactor to the regenerator, which can increase sulfur oxide (SOx) emissions. The physical effects include nodule formation (impacting catalyst circulation), vitrification and potentially reduced surface area. Severe poisoning leading to surface blockage, in which the pores are not accessible, is the most common concern. Surface blockage can prevent feed molecules from diffusing into the catalyst in the riser and products from diffusing out, leading to lower conversion, higher coke and higher slurry.
The amount of added iron that causes significant surface blockage and results in a loss of conversion depends heavily on the type of catalyst, the source of iron and other contaminants. Catalysts with optimized porosity, especially surface porosity, give improved iron tolerance. BASF practices in-situ manufacturing, which has been shown to improve iron tolerance.1 Based on surface morphology, in-situ manufactured catalysts have high surface porosity, which can withstand a higher degree of fouling due to iron. BASF catalysts have been successfully used in commercial applications with above 2 wt% equilibrium catalyst (Ecat) iron.
No loss of conversion
BASF follows iron upsets closely in the industry. In the past 15 years, BASF catalysts have not experienced a loss of conversion due to an iron upset. The case study below describes an iron excursion at a North American (NA) refinery using BASF’s Stamina catalyst. Over the course of a few months, the refinery introduced high iron feed into the FCC unit. The refinery saw iron on Ecat increase from 1.17 wt% to 1.48 wt%, representing a 45% increase in added iron (iron coming from the feed), as shown in TABLE 1. At the same time, they also saw calcium (Ca) and sodium (Na) on Ecat increase 23% and 48%, respectively, while nickel (Ni) and vanadium (V) werestable. The unit experienced no loss in activity or higher slurry yields (FIG. 1). Of note, when an increase in iron accompanies a loss in conversion, the higher iron is often an indicator of a feed change and does not cause the loss of conversion. In these cases, it is the heavier feed and increases in Na and V that result in the decreased conversion.
Differentiating iron mobility
Another area of BASF’s iron research is in the mobility of iron. When looking at iron mobility, or any metal mobility for that matter, it is important to differentiate between intraparticle mobility (within a single catalyst particle), and interparticle mobility (from particle to particle). One method of quantifying intraparticle mobility is by using scanning electron microscopy (SEM) data of cross sectional areas of Ecat particles. Comparing the amount of contaminant metal on the outer stages vs. the inner stages gives the peripheral deposition index (PDI).2 For context, vanadium typically has PDI values of close to 1, indicating close to uniform content of vanadium throughout the particle and thus high intraparticle mobility. Measured iron PDI values range from 4 to over 7, indicating low intraparticle mobility, similar to the deposition profile of nickel.
For interparticle mobility, a variety of techniques have been used to study bulk Ecat. Metals analysis of sink-float separated catalyst particles, where fractions are separated based on density, shows a standard deviation among fractions for iron between those of vanadium (high mobility) and nickel (low mobility). Looking at bulk Ecat in SEM, it can clearly be seen that there is a distinction between new (no iron) and old (high iron) catalyst particles via nodulation and surface mapping, indicating that the mobility profile of iron is distinctly different from that of V. In summary, across
a number of commercial units studied, iron does not show high interparticle mobility
like V.
Stamina: Fluid Catalytic Cracking (FCC) catalyst
Stamina is a distillate maximization Fluid Catalytic Cracking (FCC) catalyst providing measurable improvements in bottoms upgrading, light cycle oil quality and output, while preserving low coke yields.
Stamina is a Fluid Catalytic Cracking (FCC) catalyst for maximizing distillate yield from resid feeds
Stamina is a premium FCC catalyst that helps refiners process resid feedstocks to meet the growing global demand for diesel fuels.
How does Stamina work?
Stamina? is based on the new Prox-SMZ Technology Platform and combines the high matrix activity needed for light cycle oil (LCO) maximization and the enhanced macroporosity required for resid molecule access. The result — a high activity, high-stability matrix technology that cracks the heaviest resid feeds to maximize diesel yields.
What is the Prox-SMZ Technology Platform?
BASF has developed an innovative catalytic technology platform for maximizing distillate yields from a fluid catalytic cracking (FCC) unit. This unique platform, designated Prox-SMZ for Proximal Stable Matrix and Zeolite, combines attributes from both high zeolite and high matrix activity catalysts. The product is a stable and selective catalyst specifically designed for FCC distillate maximization.
What can Stamina do for refiners?
Stamina can help refiners meet the increased global demand for diesel fuels from the severest feeds. Recent trials have successfully demonstrated how well Stamina? can process feeds with higher levels of contaminant metals while reducing slurry yields.
未經允許,不得轉載本站任何文章: