
眼見為實。當地下的油藏密碼被技術破解時,也就沒那么神秘莫測了。
來自 | E&P
編譯 | 張德凱
眾所周知,油價下跌迫使頁巖開發商提高效率,其中包括鉆井方案和完井設計優化。在往常的作業中,開發商通常會放棄使用地震勘探工具,因為他們覺得已經對油藏有了足夠的認識。然而事實并非如此,在實際的鉆井作業中,通常發生無法準確鉆遇油氣甜點的情況,分支井以及射孔作業的設計難度極大。
迫于低油價的壓力,結合作業經驗,勘探工具在當今頁巖開發中的應用得到了前所未有的普及。在墨西哥灣的作業中,勘探工具能夠準確分析鹽丘以下頁巖油藏的復雜組成。地震勘探數據內容非常豐富,對于油藏性質解析能夠起到關鍵作用。例如,地震勘探數據能夠預測鉆井風險多發地層,并能識別高裂縫密度地層。將地層性質與巖土力學性質結合,即可獲得更準確的地層壓力信息,更準確地預測其對產量的影響。
新型模型提高復雜油藏模擬準確性

RockMod模型分辨率更高,上圖為Powder River盆地地層的砂層(黃色)和非常規砂層(橘色)分布
CGG GeoSoftware公司在多種類型油藏(包括復雜的非常規油藏)模擬方面都有先進的技術。其中,Jason Rock-Mod地統計學反演法模擬技術已經得到了現場應用的驗證,在復雜油藏的應用中非常有效,建立的油藏模型分辨率極高,對于鉆完井設計及生產預測都起到了非常重要的指導作用。地統計學反演法根據不同的計算原則將不同油藏的地質信息整合,包括巖石物理測井數據、地震勘探數據以及地質概念等,模型對于巖相/油藏巖石性質的預測更準確,而且模擬結果同時包括井筒及井間數據。我們都知道,非常規油藏的地層性質波動極大,包括垂直/水平方向的巖相/巖層機械性質等,所以上述模型數據就顯得格外重要。
新型模擬軟件的強大功能得益于RockMod對輸入數據的精準處理以及優秀的分析功能,模擬結果與巖相及巖層性質的分析/預測都非常準確。RockMod的一大特色是采用了Markov Chain Monte Carlo隨機反演功能,通過巖石物性模型,同時實現了地層彈性數據、油藏的巖相分析,這對于復雜油藏巖相的分析、解譯非常有效。此外,模擬結果可通過角點網格方式顯示,有常規和放大兩種模式,可直接用于靜態模型集成和井筒作業設計。
新方案識別非常規油藏

通常來講,非常規油藏的潤濕情況復雜,同時存在親水/疏水組分。巖心性質分析一直作為油藏潤濕性質分析的主要手段,然而,在當前測井工具的基礎上,還沒有一款適合的巖石物理技術能夠將巖心按照潤濕性質分類。在2016年拉斯維加斯舉行的美國石油地質學家會議中,Digital Formation公司根據多種非常規油藏數據,利用三重測井技術,提出了一種孔隙分類方案,可將巖石孔隙組分分為水潤濕和油潤濕型。
其中,油潤濕型孔隙基本為有機孔隙,是地層熱演化過程中總有機碳變化產生的。而在該技術出現之前,利用常規的巖石物理分析還無法得到油基孔隙的具體數據,利用Digital Formation提出的方法,非常規油藏的流動性質研究會取得更加準確的成果,實現油潤濕型/水潤濕型孔隙的層級量化。由于每種組分的流動性能都不同,根據孔隙量化結果,即可得到整體油藏的流動性質結果。
疊前稀疏脈沖AVO反演技術

Geokinetics公司的AVOz反演能夠進行油藏放大/補償各向異性的模型獨立表征,對油田人工智能、放大定量解析及油氣甜點識別都具有重要意義。該分析流程源自方位角AVO反演數據驅動模式,利用人工智能對甜點屬性進行分析,之后對甜點地層結構進行解析。由于地層屬性與模型是相互獨立的,分類與聚類不會受限,使模型(如Ruger)的假設條件和模糊點更少,準確度更高。稀疏Bayesian(貝葉斯)參數的應用能夠防止疊前區塊的過度評估。此外,在該模型中還采用了一種新型的Euclidean參數,以保持模擬過程中方位角自由度的旋轉不變性。目前,由于Bayesian模型只對地層稀疏參數低反射面的光滑度進行假設,應用簡單,應用非常普遍。
頁巖油藏地震勘探數據價值最大化

在北美的陸地頁巖油藏開發中,井筒數據非常豐富,基于此,地質學家可進行分層數據、水平井段數據與性質分布的關聯,之后建立模型。盡管井筒數據已非常豐富,地震勘探數據必不可少,那么有哪些信息是其他井筒信息無法提供的呢?地震勘探數據對故障預測極其重要,故障包括定向鉆井中的相關風險、高縫隙密度區塊等,還設計提高采收率問題。當前又出現了一種新的故障網絡理解方式—全面認知解讀。認知解讀是通過控制思維中的認知能力和現代闡釋技術的計算能力,對地層信息進行快速、準確的解譯。
通過結合不同斷層性質數據,地質學家可得到斷層類型等信息,進而對地層屬性就可得到更全面的認識。配色方案對于識別一幅圖表中不同數據源中的新型非常有效,將三種地層缺陷屬性分別以青色、品紅、黃色(CMY)表示,根據顏色變化可快速獲得斷層屬性和差異信息。在CMY減色法識別斷層信息中,如果三種顏色斷層信息都檢測為錯誤,則會顯示為黑色。
非常規油藏表征分辨率提高八個數量級

有機頁巖孔隙的高分辨率表征,分辨率由25mm提升至納米級別
Zeiss Microscopy Business Group的高分辨率顯微鏡可提供多種規格的圖像分析表征,將油氣工程師的巖心分析帶入了納米水平。此外,通過在單一分析平臺配置不同工具,在放大分析的同時還可進行2D/3D光學、XRD及電子顯微鏡分析。獲得這些數據后,與高級可視化、量化、模擬工具結合,即可得到孔隙率、孔隙結構、孔隙連通性、礦物學、礦物分布、裂縫分布及其他對碳氫化合物流動產生影響的地層巖石物理性質;然后進一步將這些信息用于油田或是整個油藏區塊的模型建立,指導油藏的勘探開發及后期開采工作的進行。巖層礦物成分/組合的分析對于研究水力壓裂影響也非常重要,利用這些數據,開發商和作業人員就能優化井間距,最小化完井失誤率。
您也有讓人撓頭的難題需要解決,或是優質技術想要找應用市場嗎?如果有的話,歡迎聯系小編微信或郵箱,也許能找到一劑良藥。
檸檬:186-2292-2332;weiyameng@fonchan.com
二丫:131-3255-0596;zhanglingyu@fonchan.com
For English, Please click here (展開/收縮)
The downturn has unquestionably forced shale operators to get more efficient, not only in their drilling programs but also in their completions designs. Gone are the days when tools like seismic were considered unnecessary in shales because operators already knew where they were. In fact, shales, being the contrary rocks that they are, have thrown up a huge learning curve in terms of finding the best places to land the laterals and place the perforations.
So subsurface sensing tools are entering the shale domain like never before. Tools that were designed to peek below the salt domes in the Gulf of Mexico are proving to be just as adept at clarifying the complexities of shale formations. Seismic data contain a wealth of information that can help explain these reservoirs. For instance, seismic data can help image faults to both avoid drilling hazards and characterize areas of high fracture density. Incorporating rock property and geomechanical information helps operators better understand the pressure regime in their reservoirs and how this might impact eventual production.
BETTER RESERVOIR MODELS IN COMPLEX PLAYS
CGG GeoSoftware powers multidisciplinary workflows for all types of reservoirs, including complex unconventional resource plays. Jason Rock- Mod geostatistical inversion has proved itself to be an effective tool in these environments, providing high-detail reservoir models to guide well planning and more confidently forecast production. Geostatistical inversion methods integrate geoscience data of different scales from different disciplines, such as petrophysical well log data, seismic data and geological concepts, to create models that predict lithofacies and reservoir rock properties more accurately, not only at well locations but between the wells. This is important in unconventional plays, where the subsurface exhibits significant variations in lithofacies and reservoir and mechanical properties both laterally and vertically. Multiple realizations of the model are generated by RockMod that honor the input data and are then analyzed with a ranking tool to assess uncertainty in facies and rock property estimates. Key differentiators for RockMod include a Markov Chain Monte Carlo stochastic inversion scheme, where facies are simultaneously inverted with elastic and reservoir properties through rock physics models. This enables very subtle facies interpretations in complex plays. In addition, model results can be delivered in a corner point grid format, with or without upscaling, for direct integration into static modeling workflows and wellbore planning activities.
METHODOLOGY DISTINGUISHES UNCONVENTIONAL RESERVOIR COMPONENTS
It is commonly recognized that unconventional reservoir systems have mixed wetting, both a waterwet fraction and an oil-wet fraction. Analysis of rock samples has been used for many years to measure reservoir wetting. However, there are currently no available petrophysical techniques for wetting categorization using readily available logging suites. In 2016 at the American Association of Petroleum Geologists meeting in Las Vegas, Digital Formation presented data from several unconventional reservoirs using triple- combo logs to categorize the porosity component that is water-wet while recognizing another component that is oil-wet. The oil-wet component is organic porosity generated from the total organic carbon during the thermal maturation process. This organic porosity has not been previously calculated in standard petrophysical analysis. The approach has very significant applications to the study of the flow characteristics of unconventional reservoirs. The amounts of porosity that are oil-wet and water-wet can be quantified level by level. Each component will have markedly different flow characteristics to derive a combined response for the total system.
A SPARSE PRESTACK AZIMUTHAL AVO INVERSION
Geokinetics’ AVOz inversion provides a modelindependent characterization of amplitude vs. offset (AVO) anisotropy enabled from the ground up to support artificial intelligence, augmented quantitative interpretation and interpretation of sweet spots. This analysis workflow extracts attributes of azimuthal AVO in a data-driven fashion, applies artificial intelligence to resolve structure in the attribute space and then provides interpretation of these structures. Because the attributes are model-independent, classification and clustering is not constrained to limiting assumptions and ambiguities of models such as the Ruger model. Sparse Bayesian priors are applied in the prestack domain to guard against overfitting. A novel Euclidean prior is derived to preserve the rotational invariances required by the azimuthal degree of freedom. The Bayesian prior model is very general, assuming only sparseness of the layered earth and smoothness of the reflectivity surface.
THE VALUE OF SEISMIC IN SHALE PLAYS
In onshore U.S. shale plays there is an abundance of well data, allowing geoscientists to correlate well tops, horizons and property distribution for model-building. With all of these well data, is seismic needed, and what can seismic tell us that the high density of well data doesn’t? Seismic data are extremely important for fault mapping. Faults can be a drilling hazard when geosteering but also define areas of high fracture density for improved recovery. A new way to understand the fault network is through cognitive interpretation. Cognitive interpretation harnesses the mind’s cognitive ability and the computing power of modern interpretation techniques to rapidly and accurately interpret geology. By revealing fault patterns through the blending of several fault attributes, geologists and geophysicists are able to gain a better understanding of the subsurface. Color blending helps identify the relationship between information from different data volumes in a single image. A blend of three fault attributes in a cyan, magenta and yellow (CMY) color scheme will rapidly provide new insights and distinguish greater detail from the variation in colors. Fault attributes using a CMY subtractive color scheme will result in black if all three fault volumes detect a fault.
CHARACTERIZING UNCONVENTIONAL RESOURCES ACROSS EIGHT ORDERS OF MAGNITUDE
Zeiss Microscopy Business Group’s oil and gas products include microscopes that provide a range of multiscale imaging solutions, allowing petroleum engineers to move directly from the whole core down to the nanopore and back up again by integrating 2-D and 3-D data from light, X-ray, electron and charged ion microscopy in a single multiscale correlative platform. These data are then linked with advanced visualization, quantification and modeling tools to give information on porosity, pore structure, pore connectivity, mineralogy and mineral distribution, fracture aperture distribution, and many other key petrophysical properties governing macroscopic hydrocarbon flow and transport. This information can then be used to better inform the creation of field- and basin-scale models, guiding ongoing E&P and development. Characterization of the rock’s constituent mineral assemblage also is critical for understanding how a sample will respond to hydraulic stimulation, enabling producers and operators to better design well spacing and minimize completion failure.
未經允許,不得轉載本站任何文章: