
哈里伯頓將旋轉導向、隨鉆測井以及StrataSteer 3D服務結合在一起,可實現指哪兒打哪兒,使井段全部保持在油藏“甜點”范圍內。
來自丨World oil
編譯丨TOM
在墨西哥灣深水區(7000英尺),由于地層橫向變化復雜以及地震的不確定性,作業者很難確定著陸段是否接近儲層頂部。著陸困難的主要原因是由于地質構造不穩定以及電阻率較低的地層環境。然而對于作業者而言,準確的控制井位與井眼軌跡是極其重要的。若是執行設計失敗,就會導致脫靶,造成數百萬美元的額外損失。
下面介紹基于地震解釋兩種不同的地質構造情況,它們會給鉆井作業帶來額外的挑戰:
(1)相對平緩的地層傾角;
(2)更為陡峭的地層傾角。
每種地質情況都需要不同的方法來進行著陸。此外,由于橫向變化,鄰井之間的測井相關性缺乏必要的隨鉆測井(LWD)響應,因此難以識別標志層,并且增加了預測地質模型中的不確定性。
業內提出利用地質導向與地層邊界繪圖系統,控制井眼著陸于目標位置,并利用近鉆頭系統來輔助降低井眼的狗腿,從而降低著陸的風險與地質不確定性。地層傾角成像系統能夠實時提供關鍵的地層構造信息,因此作業者可以控制井眼著陸,使井段全部保持在“甜點”范圍內。
底部鉆具組合方案
為了解決復雜的定向挑戰,哈里伯頓的鉆井技術團隊推薦了滿足要求的底部鉆具組合(BHA),以確保按計劃實施鉆井與測井作業。推薦的鉆井方案包括Geo-Pilot 5200旋轉導向系統(RSS),近鉆頭伽馬(ABG)、近鉆頭測斜傳感器(ABI)、方位深探測電阻率(ADR)工具以及地層密度和巖性(ALD)傳感器,如圖1。

圖1. 帶有Geo-Pilot 5200旋轉導向系統與ABI/ABG傳感器的底部鉆具組合。
數據3D可視化技術。鉆井解決方案的核心是StrataSteer 3D動態井眼定位服務,該服務專為小范圍靶點而設計,因為該類作業需要復雜的井眼軌跡以及更精確的井眼定位和著陸。該服務將數字3D地球模型、井眼軌跡設計、巖石物理性質與實時隨鉆測井數據集成到一個靈活的視覺環境中,從而能夠根據井眼軌跡變化的情況,快速做出關鍵的實時決策。該服務為作業者提供了更多的油藏信息,以幫助減少循環時間與鉆井作業時間,同時提高油藏的接觸面積。
鉆井作業
鉆井作業時,將傳感器獲得的數據通過StrataSteer三維地球模型軟件進行正向建模處理,以預測油藏的頂部進入點。但由于缺乏鄰井測井的相關性分析,這種處理會造成地質構造的不確定性。但是,利用新的實時數據過濾已有信息,工程師可以將這些信息與選定的鄰井關聯起來,從而了解地層情況,以實現相對于油藏的精確井眼定位。
當井段著陸時,近鉆頭伽馬傳感器提供了近鉆頭方位伽馬值,能夠及時顯示出巖性的變化,并確保主動導向以避免不必要的井眼彎曲。地層密度與巖性傳感器提供了地層傾角與地層構造數據,這些數據被整合到StrataSteer 3D地球模型中,如圖2。儲層頂部的實時投影在整個著陸過程中提供了出色的控制。方位深探測電阻率傳感器的數據證實了井眼著陸位置存在碳氫化合物,如圖3.

圖2. ALD圖像解釋與產生的地層傾角圖。

圖3. 井下傳感器組合輔助井眼著陸。
利用相同的工具,繼續鉆進至別的靶點。由于油藏內的電阻率較高,ADR傳感器最適合為周圍地層邊界提供足夠的預警。ABG與ALD數據分別提供了近鉆頭的地層與構造信息,為StrataSteer三維軟件的地質模型提供了補充。這一工程鉆井解決方案使井眼處于最佳位置,使作業者能夠充分開發儲層,增加產量。
最優開發油藏
該團隊與作業者合作,確定了儲層的挑戰,并設計了一套地質導向解決方案,以最大限度地提高深水油藏的價值。該解決方案主要包括對鄰井數據的全面分析,以及各種井下傳感器技術的正向建模。最終,工程團隊確定了一個集成隨鉆測量、隨鉆測井、旋轉導向的組合,可以有效地實現作業者的兩個主要鉆井目標:增加產量、降低成本。

圖4. 著陸后,相同的傳感器使工程師能夠精確的控制油藏中的水平段。
作業成功。在作業過程中,近鉆頭伽馬值可以顯示出地質的變化,因此能夠準確快速的判斷出儲層頂部,優化進入點,使鉆井團隊能夠成功地將井眼導向至目標區域。并利用測井數據,不斷更新地質構造模型,以準確確定地層傾角與巖性,加強對儲層的理解,從而提高鉆井效率。地質導向解決方案使井隊能控制井眼全部位于產油層,最終止于在油水界面之上(圖4)。除了增加產量外,地質導向解決方案為作業者節省了大約60萬美元, 并幫助其最大化開發深水油藏。
您也有讓人撓頭的難題需要解決,或是優質技術想要找應用市場嗎?如果有的話,歡迎聯系小編微信或郵箱,也許能找到一劑良藥。
二丫:131-3255-0596;zhanglingyu@cnoocraiborn.com
大安:131-3203-1392;lishian@cnoocraiborn.com
For English, Please click here (展開/收縮)
At a deepwater (7,000 ft) location in the Gulf of Mexico, an operator was struggling to identify the approaching reservoir top during the landing section due to complex geology with lateral variation and seismic uncertainty.
At a deepwater (7,000 ft) location in the Gulf of Mexico, an operator was struggling to identify the approaching reservoir top during the landing section due to complex geology with lateral variation and seismic uncertainty. The primary challenges for landing the curve included structural instability and a low-resistivity environment. Precise wellbore placement and correct borehole trajectory were critical. Any failure to execute per plan would cause a geological sidetrack, costing millions of dollars in extra rig time.
Two different structural scenarios, based on seismic interpretation, provided additional challenges: 1) a relatively gentle dip angle; or 2) a steeper dip angle on the landing approach. Each geological scenario required a different method to land the wellbore. Additionally, log correlation with offset wells lacked the required logging-while-drilling (LWD) responses, due to lateral variances, making it difficult to identify marker beds and increased uncertainty in the models used to predict geology.
To reduce risk and geological uncertainty in landing the borehole, proactive geosteering along with a bed boundary mapper system were proposed to accurately land the wellbore at the desired position coupled with at-bit systems that would assist in minimizing wellbore tortuosity. A formation dip imaging system would provide critical formation structure in real-time enabling the asset team to control the landing and maintain the lateral wellbore section 100% in the sweet spot.
ENGINEERED BHA SOLUTION
To solve the complex set of directional challenges, Halliburton’s technical drilling team recommended a bottom-hole-assembly (BHA) that met the requirements to ensure the wellbore was drilled and logged per plan. The proposed drilling solution included a Geo-Pilot 5200 rotary steerable system (RSS) with at-bit gamma (ABG) and at-bit inclination sensors (ABI), combined with an azimuthal deep resistivity tool (ADR) and azimuthal lithodensity (ALD) sensors.
3D data visualization technology. Central to the drilling solution was the StrataSteer 3D dynamic wellbore positioning service, which is designed specifically for smaller targets that require complex well paths and more accurate wellbore positioning and landing. The service integrates digital 3D earth models, planned well trajectories, petrophysical input and real-time LWD data into a flexible visual environment that enables the rapid interpretation required to make critical real-time decisions regarding borehole trajectory changes. The service provides operators with greater reservoir insight to help reduce both planning cycle-time and drilling hours, while enhancing reservoir understanding for maximum contact.
WELL EXECUTION
During drilling operations, data captured from the sensors was processed through the forward modeling functionality of the StrataSteer 3D earth model software, to predict the top entry point in the reservoir. The project was hampered by the lack of log correlation between offset wells, which caused uncertainty in geological scenarios. However, by filtering existing information with new real-time data, it enabled engineers to correlate this information with select offset wells leading to understanding of the geological scenarios, enabling accurate wellbore positioning, relative to the reservoir.
When landing the section, the ABG sensor provided near-bit azimuthal gamma ray readings, showing changes in lithology immediately and ensuring proactive geosteering to avoid unnecessary borehole tortuosity. The ALD delivered dip angles and structural data, which were incorporated into the StrataSteer 3D earth model. The real-time projection of the reservoir top provided excellent control throughout the landing process. The ADR readings confirmed the presence of hydrocarbons for the wellbore landing.
Drilling continued in the lateral section, utilizing the same tools, but with different objectives. Because of higher resistivity within the reservoir, the ADR sensor was best-suited to provide sufficient warning for the surrounding formation boundaries. The ABG and ALD data provided the near-bit formation and structural information respectively that complemented the geological model in StrataSteer 3D software. This engineered drilling solution kept the wellbore in the sweet spot, enabling the operator to fully exploit the pay-zone for increased production.
MAXIMIZING ASSET VALUE
The team collaborated with the operator to identify the reservoir challenges and engineer a geosteering solution to maximize the value of the deepwater asset. The solution-based design(s) included a thorough analysis of offset data, along with forward modeling of various down-hole sensor technologies. After the study, the engineering team determined an integrated MWD/LWD/RSS combination had the potential to efficiently achieve the operator’s two main drilling objectives—increase production and lower costs.
span>Operational success. During the run, at-bit ABG readings showed variations in geology, enabling accurate and quick detection of the formation top, optimizing the entry point and enabling the drilling team to successfully land the wellbore in the target zone. The model was updated continuously to accurately determine formation dip and lithology, increasing drilling efficiency through enhanced reservoir understanding. The geosteering solutions enabled the drilling team to keep the lateral in the target pay-zone 100% of the time, stopping above the oil water contact, Fig. 4. In addition to increasing production, the engineered geosteering solution saved the operator approximately $600,000, aiding in maximizing the value of this deepwater asset.
未經允許,不得轉載本站任何文章: